See following call for papers for the CMM graduate conference

__________________________________________________________________

The Centre for Metaphysics and Mind at the University of Leeds is

hosting the 4th Annual CMM Graduate Conference on Friday 4th

September.

Submissions are welcome on any area of metaphysics. Metaphysics should

be broadly construed to include not only traditional metaphysical

topics, but also the metaphysical aspects of e.g. philosophy of mind,

philosophy of physics, philosophy of religion, and aesthetics.

Submissions of any length up to 5,000 words will be considered.

Each paper presented at the conference will be followed by a response

from a member of academic staff or PhD student from the University of

Leeds Department of Philosophy.

As with last year's conference we hope to be able to pay some or all

of the travel and accommodation costs for those people whose papers

are accepted. (This is dependent on successful funding applications.)

Please submit complete papers, preferably by e-mail, to Joanna

Pollock, joeykpollock@googlemail.com. Please mark your submission

clearly as such. Receipt will be acknowledged asap.

All papers should be suitable for blind review (we cannot guarantee

anonymised refereeing if your paper is not suitably anonymised).

Please include a cover page with title, abstract and contact details.

Deadline for receipt of submissions is Sunday 19th July 2009.

Decisions will be made by Monday 10th August 2009.

For more general details on the conference please consult:

http://www.personal.leeds.ac.uk/~phsk/cmmgc09/index.htm

or e-mail Duncan Watson at phl5dw@leeds.ac.uk

## Thursday, June 18, 2009

## Monday, June 01, 2009

### Composition as identity does not entail universalism

In my Contingency of Composition paper, I deny the commonly held claim that composition as identity (CAI) entails universalism about composition. (The entailment is defended by Sider, Merricks, et al.) My basic thought was: CAI says just that a complex object is identical to its parts – that tells us only that when you’ve got a complex object, it is identical to its parts, and this is silent about whether or not for any collection of objects there is such a complex object that they are identical to. If many-one identity makes sense then, prima facie, it makes sense to claim that for some collections of objects there’s a one that they are identical to, and some collections of objects such that there’s no one object that they are identical to. All CAI tells us is that it’s all and only the first collections that compose. To assume that every collection composes is just to assume that for any collection of objects, there’s a one to which they are identical. Why would I accept that if I doubted universalism?

In denying the entailment, I need to respond to an argument that both Sider and Merricks give for it. They argue as follows: Suppose (for reductio) the Xs don’t compose. They could do. Go to the world where they do (w). In w, there’s a one, A, that’s identical to the Xs. Given the necessity of identity, A is actually identical to the Xs. So the Xs actually compose A. Contradiction. Formally:

1) ◊(Xs=A)

2) ◊(Xs=A) -> □(Xs=A)

3) @(Xs=A)

In my paper I attempted to resist this argument with some pretty tricky moves – and while I still think they’re right, I think I haven’t exactly convinced the world! (See the earlier discussion on this blog) But I think I can actually make the point more simply than I did then.

The argument aims to prove that the Xs are actually identical to A. Thus, there is a one that the Xs are identical to: A. So since to compose is to be identical to a one, the Xs compose. But wait! All the argument shows is that it’s actually true that the Xs are A. Where do we get the claim that there’s a one that the Xs are identical to? This follows, obviously, if A is actually a one. But where does that claim come from? All we know is that A is possibly a one. Ex hypothesi A is a one in the world in which the Xs compose. But we can only conclude that A is actually a one – and hence that there’s a one that the Xs are actually identical to – if we have the assumption that anything that is possibly a one is necessarily a one. But what right do we have to make that assumption? If we’re leaving open the possibility that there’s a many that’s not a one but could be (and at this stage we must, lest we beg the question), we should also leave open the possibility that there’s a many that is a one but might not be. Since the many is the one, this is a one that might not be a one: a one that is a many, but that might have been a mere many – a many that is identical to no one. If the Xs don’t actually compose this is the status we should think A has in the world in which they do compose. So sure A is actually identical to the Xs: but A is actually just a name for the plurality, a plurality that don’t actually compose. A is only a one in the worlds in which that many do compose. And we’ve been given no reason to think we’re forced into thinking that our world is one of those.

In denying the entailment, I need to respond to an argument that both Sider and Merricks give for it. They argue as follows: Suppose (for reductio) the Xs don’t compose. They could do. Go to the world where they do (w). In w, there’s a one, A, that’s identical to the Xs. Given the necessity of identity, A is actually identical to the Xs. So the Xs actually compose A. Contradiction. Formally:

1) ◊(Xs=A)

2) ◊(Xs=A) -> □(Xs=A)

3) @(Xs=A)

In my paper I attempted to resist this argument with some pretty tricky moves – and while I still think they’re right, I think I haven’t exactly convinced the world! (See the earlier discussion on this blog) But I think I can actually make the point more simply than I did then.

The argument aims to prove that the Xs are actually identical to A. Thus, there is a one that the Xs are identical to: A. So since to compose is to be identical to a one, the Xs compose. But wait! All the argument shows is that it’s actually true that the Xs are A. Where do we get the claim that there’s a one that the Xs are identical to? This follows, obviously, if A is actually a one. But where does that claim come from? All we know is that A is possibly a one. Ex hypothesi A is a one in the world in which the Xs compose. But we can only conclude that A is actually a one – and hence that there’s a one that the Xs are actually identical to – if we have the assumption that anything that is possibly a one is necessarily a one. But what right do we have to make that assumption? If we’re leaving open the possibility that there’s a many that’s not a one but could be (and at this stage we must, lest we beg the question), we should also leave open the possibility that there’s a many that is a one but might not be. Since the many is the one, this is a one that might not be a one: a one that is a many, but that might have been a mere many – a many that is identical to no one. If the Xs don’t actually compose this is the status we should think A has in the world in which they do compose. So sure A is actually identical to the Xs: but A is actually just a name for the plurality, a plurality that don’t actually compose. A is only a one in the worlds in which that many do compose. And we’ve been given no reason to think we’re forced into thinking that our world is one of those.

Subscribe to:
Posts (Atom)